IoT and Big Data

New Challenges and Architectures

Francesco Palmieri

Under the data deluge...

- In 2018 we produced more data than in the previous 5000 years of human history
- Who enabled this phenomenon?

1. Richard Harris, More data will be created in 2017 than the previous 5,000 years of humanity, App Developer Magazine, December 23, 2016

... the Internet of Things (IoT)

- Extending the current Internet and providing connection, communication, and inter-networking between devices and physical objects, or "Things," is a growing trend that is often referred to as the Internet of Things (IoT).
- A Thing may be a sensor or actuator. It may be able to execute computations and or communicate over wired or wireless interfaces.
- A Thing may be tagged (passive) or connected.

Definitions from "Building the Web of Things" Guinard and Trifa

New active "Things" are being connected

Home/daily-life devices
Business and
Public infrastructure
Health-care

But also «passive» ones...

Application environment

Smart homes and smart cities

Smart Home Applications

- Remote Control
- Monitoring and Sensing
- Security & Protection

• Smaty City Applications

Wall second (Phone) May Lought Guits (Michen Next (Phops) No. 1 0600 Blood

- VANETs
- Fleet Management
- Traffic Optimization
- Emergency Management
- Surveillance

People Connecting to Things

... and Things Connecting to People

Things Connecting to Things

An example: modern cars

- economy car: more than 200 sensors (brakes, belts, air bags, doors, etc.)
- luxury car: more than 600 sensors (A/C, ABS, lights, radar, road conditions)
- Vehicle safety and comfort has improved via sensors and actuators

Another example: Google glasses

- The amazing internet connected glasses that contain a camera, microphone, display and will generally revolutionize the wearable device market

Another example: Luggage tracking

- monitor your luggage on air travel and text you when it arrives at the destination as well as how far it is from the luggage belt.

Another example: WiFi light bulbs

- energy efficient and wifi enabled light bulb that you can control from your smartphone – you can even change colours and mood

WiFi Smart Bulb

Another example: electronic fork

 Electronic Bluetooth connected fork that helps you monitor and track your eating habits

Another example: electronic thermostat

- A thermostat that will get to know you and learn from the way it is used to automatically adjust the temperature in your home

New Dimensions

New Opportunities

Intelligent Systems for a More Connected World

Technology trend

TECHNOLOGY ROADMAP: THE INTERNET OF THINGS

Internet of Things Evolution

Networks Assume Paramount Importance

- The Roles of Networks
 - Managing nodes (discovery, join, leave, etc).
 - Relaying data packets from the source to the destination node
- RF-based Network in IoT is usually Wireless Multihop:
 - Wireless Sensor Networks (WSNs)
 - Mobile Wireless Ad hoc Networks (MANETs)
 - Wireless Mesh Networks (WMNs)
 - Vehicular Ad Hoc Networks (VANETs)
- Main concern: Reliability & Performance

The IoT ecosystem

6/28/2019

IoT Data Challenges

- Multi-modal and heterogeneous
- Noisy and incomplete
- Time and location dependent
- Dynamic and varies in quality
- Crowed sourced data can be unreliable
- Requires (near-) real-time analysis
- Privacy and security are important issues
- Data can be biased- we need to know our data!

IoT data Challenges

Discovery: finding appropriate device and data sources

Access: Availability and (open) access to resources and data

Integration: dealing with heterogeneous device, networks and data

Scalability: dealing with myriad of data and computational complexity of interpreting the data.

IoT data fabric is needed

Data processing in IoT

- Turn terabytes of data created each day into analytics related to different events/occurrences or relate them to products and services.
- Convert (billions of) smart meter readings to better predict and balance power consumption.
- Analyze thousands of traffic, pollution, weather, congestion, public transport and event sensory data to provide better traffic and smart city management.
- Monitor patients, elderly care and much more...
- Requires: real-time, reliable, efficient (for low power and resource limited nodes), and scalable solutions.

The Need for Integration: Computation

- Things have limited computational and energy resources
 - on-site processing not feasible on site
 - aggregation nodes are needed
- Cloud enables
 - task offloading and energy saving
 - scalable, real-time, sensor-centric applications
 - data-driven decisions
 - AI, ML, prediction algorithms

The Need for Integration: Storage

- IoT involves
 - a large set of information sources
 - a huge amount of non-structured/semistructured (BIG) data
 - the need for collecting, searching, accessing, sharing, visualizing this data

 Cloud is the most convenient and effective solution to accomplish these tasks

The Need for Integration: Overlay Networks

Overlay through SDN and slicing

Data-centric networking

- In typical networks (including ad-hoc networks), network transactions are addressed to the identities of specific nodes
 - A "node-centric" or "address-centric" networking paradigm
- In a redundantly deployed sensor networks, specific source of an event, alarm, etc. might not be important
 - Redundancy: e.g., several nodes can observe the same area
- Thus: focus networking transactions on the data directly instead of their senders and transmitters; data-centric networking
 - Specially this idea is reinforced by the fact that we might have multiple sources to provide information and observations form the same or similar areas.
 - Principal design change

In-network processing

- Mobile Ad-hoc Networks can be seen as a set of nodes that deliver bits from one end to the other;
- IoT infrastructures on the other end, are expected to provide additional services within the network
 - Gives additional options
 - e.g., manipulate or process the data in the network
- Main example: fog-based aggregation
 - Applying aggregation functions on measurement data to:
 - Reduce number of transmitted bits/packets by applying an aggregation function in the network
 - Reduce the size of the data representation
 - Reduce Latency: delay time to compute and report the aggregated data

Data Aggregation

- Computing a smaller representation of a number of data items (or messages) that is extracted from all the individual data items.
- For example computing min/max or mean of sensor data.
- More advance aggregation solutions could use approximation techniques to transform highdimensionality data to lower-dimensionality abstractions/representations.
- The aggregated data can be smaller in size, represent patterns/abstractions; so in multi-hop networks, nodes can receive data form other node and aggregate them before forwarding them to a sink or gateway.
- Or the aggregation can happen on a sink/gateway node.

Edge/Fog Optimization in the IoT Network

- Depending on application, more sophisticated processing of data can take place within the network
- Exploit temporal and spatial correlation
- Move intelligence towards data through edge computing
- Perform traffic engineering within the transport network to optimize data movements

Q & A?

Thanks for attention...

